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Abstract The synthesis of high molecular weight polyamides by using 1-methyl-3-
alkyl imidazolium bromides (alkyl = C;—Cg) as reaction media has been reported.
Polymers were prepared from the reaction of 2-(5-(3,5-diaminophenyl)-1,3,4-oxa-
diazole-2-yl)pyridine, POBD, and aromatic/aliphatic dicarboxylic acids in ionic
liquids in the presence of triphenyl phosphite as a condensing agent without requiring
any extra components such as CaCl, or pyridine. The number average molecular
weight of the polymers was measured by vapor pressure osmometry. The effects of
various reaction parameters such as alkyl chain length of ionic liquids, reaction
temperature, and reaction time on the molecular weight were investigated. No reg-
ular relationship between inherent viscosity or molecular weight with the alkyl chain
length in the ionic liquid was observed; however, the highest molecular weight was
observed in 1-butyl-3-methyl imidazolium bromide. The thermal properties of the
prepared polymers were also studied with DSC and TGA methods. Removal of Co*™
from aqueous solutions was performed using polymer (7).
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Introduction

Most solvents are volatile organic compounds (VOCs). They are used in very large
amounts, and are very harmful chemicals. Many efforts are being carried out to
modify chemical processes to reduce or eliminate the loss of solvents, particularly
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volatile organic compounds that is important from economical and environmental
points of view. It is clear that the replacement of a VOC solvent with a non-volatile
solvent will reduce losses that occur through evaporation. Ionic liquids can be
considered as good candidates for this purpose due to their negligible vapor
pressure. In general, an ionic liquid is a liquid that consists only of ions. However,
an ionic liquid differs from a molten salt, which refers to a high-melting point,
highly viscous and very corrosive medium. By contrast, ionic liquids melt
(i.e., become liquid) at low temperature (<100 °C) and have relatively low viscosity
[1, 2].

The synthesis of ionic liquids was firstly attempted in 1914 with the synthesis of
ethylammonium nitrate [3]. After that, only a few reports on the synthesis and use of
these materials were published in the literature until the early 1980s [4-8]. The use
of acidic ionic liquids with chloroaluminates ions, as effective Fridel-Crafts
catalysts and phosphonium halide melts in nucleophilic aromatic substitution
reaction, were the first publications on the use of these compounds as reaction media
and catalysts [9, 10]. Currently, most reports in this field focus on the study of
chemical synthesis in ionic liquids as solvents [2, 11-23].

It seems reasonable that ionic liquids may enhance polymer syntheses. For this
reason, ionic liquids have attracted increasing attention as reaction media for
performing polymer syntheses. It was shown that these neoteric systems can be used
to perform free radical [24], living radical polymerization [25], atom transfer [26],
reverse atom transfer [27], and reversible addition-fragmentation chain transfer
(RAFT) polymerizations [28]. Successful applications of ionic liquids for the
synthesis of polyimides and polyamides via polycondensation reactions have been
reported [29-34].

We are interested in the synthesis of highly thermally stable polymers. It was
found that the thermal stability of polymers can be increased by incorporation of
oxadiazole moieties into the polymer structure [35]. Aromatic poly(1,3,4-oxadiaz-
ole)s are classified as high-performance polymers with excellent mechanical
strength and stiffness. The outstanding thermal stability is ascribed to the fact that
the oxadiazole ring is electronically equivalent to the phenylene ring structure,
which is known to be highly thermally resistant. Thus, polymers containing 1,3,4-
oxadiazole moieties are considered as alternatives for the development of flame
resistant, semi-conducting, fiber-forming and thermally stable membranes for gas
separation purposes [36—40]. For this purpose, the synthesis of new diamine,
2-(5-(3,5-diaminophenyl)-1,3,4-oxadiazole-2-yl)pyridine POBD (5), which contains
1,3,5-oxadiazole and 2-pyridyl moieties, has been successfully carried out by our
research team. The coordination ability of the 2-pyridyl group adjacent to the 1,3,4-
oxadiazole ring toward metal ions has been noted in the designing of POBD (5). The
new diamine (POBD) (5) has been used for the preparation of new polyamides using
a series of aromatic and aliphatic dicarboxylic acids [41, 42]. The present work
deals with the development of methods for the synthesis of high molecular weight
POBD-based polyamides in ionic liquids with 1,3-dialkyl imidazolium bromides
(alkyl = C3—Cy) as reaction media. Direct polycondensation is successfully carried
out in ionic liquids in the presence of triphenyl phosphite (TPP) as a condensing
agent without any additional extra components, such as CaCl, and pyridine.
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The polymers were prepared from a polycondensation reaction POBD (5) and
aromatic/aliphatic dicarboxylic acids. The effect of the alkyl chain length of the
ionic liquid on the inherent viscosities and number average molecular weight (M,,)
was investigated and compared with conventional methods for the synthesis of the
polyamides from dicarboxylic acids/acid chlorides. Thermal properties of the
polymers were investigated with DSC and TGA methods.

Experimental
Instruments

NMR spectra were obtained on a Bruker 300 MHz spectrophotometer. The IR
(KBr) spectra were recorded on a Buck Infrared Spectrophotometer Model 500.
DSC and TGA thermograms were measured on DSC PL and TGA PYRIS 1
instruments, respectively. Elemental analyses of the samples were performed on
Elemental Vario EL III instruments. Inherent viscosities were measured with an
Ostwald viscometer at 25 °C in concentrated sulfuric acid. The number average
molecular weight M, of thepolymers was measured with a vapor pressure
osmometer (VPO) (KNAUER-K7000) using DMF as a solvent at 90 °C and
polystyrene (PS, Fluka) as a calibrant. Scanning electron microphotographs were
obtained on a LEO 1430VP instrument. A jar test instrument (Model J6-1A) was
obtained from Beijing West City Instruments Factory, China. This instrument had
six linked units, and every unit had a 1000 mL beaker and a stainless stirrer.
A UV-Vis spectrophotometer (Model HACH DR/5000) was provided by HACH
Co. A WTW (Inolab) pH meter (WTW-Inolab terminal 740) was used for the pH
measurements and was calibrated with buffer solutions at pH 4 and 7 prior to use.

Materials

All chemicals were laboratory grade and were obtained from Merck (Germany). The
drying of solvents was carried out according to common methods. All solvents were
of laboratory grade and dried according to procedures described in the literature
[43]. All the chemicals used in experiments were of analytical reagent grade.
Cobalt(II) chloride-6H,O was used as source of cobalt ions. Cobalt solutions were
prepared according to standard methods [44]. Stock cobalt solutions were initially
prepared and preserved with concentrated HNO;.

Typical procedure for the synthesis of ionic liquids

Ionic liquids were prepared in accordance with the procedure described previously
[45]. For example, in a 2 L two-necked round bottom flask fitted with a reflux
condenser, n-bromobutane (28.77 g, 0.21 mol) was slowly added to freshly distilled
N-methyl imidazole (0.20 mol, 16.4 g) with magnetic stirring. Caution: the reaction
is exothermic, and cooling is advisable for large-scale reactions. Bromobutane was
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added at such a rate that the temperature of the mixture did not exceed 40 °C. This
mixture was then stirred at room temperature for 24 h. Unreacted materials were
rotary evaporated under reduced pressure at 40 °C. The product was dried in a
vacuum at 40 °C for 24 h. Pure 1-butyl-3-methyl imidazolium bromide (B) was
formed after standing for a day at room temperature as a yellowish solid
(94% yields).

Pyridine-2,6-dichlorocarbonyl

The compound was prepared in accordance with a procedure reported in the
literature [46]. 2,6-Pyridine dicarboxylic acid (3.75 g, 22.46 mmol) (Merck Co.)
was added to 15 mL of freshly distilled thionyl chloride and refluxed for 15 h. The
reaction mixture was concentrated to remove the excess thionyl chloride under
reduced pressure, and it was extracted three times with 30 mL portions of sodium-
dried benzene. The benzene solution was rotary evaporated to small volume under
reduced pressure, and a colorless needle crystal precipitated after the solution was
deposited for 24 h. The mixture was then filtered to give 4.4 g of pyridine-2,6-
dichlorocarbonyl (yield: 96%, m.p.: 66-67 °C).

Pyridine-2-(1H)-tetrazole (2)

In a 250 mL round bottom flask equipped with a magnetic stirrer and reflux
condenser, pyridine-2-carbonitrile (1) (10.00 g, 96.15 mmol), ammonium chloride
(6.70 g, 125 mmol), and sodium azide (8.13 g, 125 mmol) were placed in 60 mL of
dry DMF. The mixture was refluxed for 17 h, cooled to room temperature, poured
into 300 mL of water and then acidified to pH 2 with the gradual addition of
concentrated hydrochloric acid. The precipitate was filtrated in a vacuum, washed
with water, and re-crystallized from 95% ethanol to give 17.1 g of white crystals
as pure product; IR (KBr, cm™'): 3082 (s), 2956 (s), 2721 (s), 2594 (s), 1551 (s),
1448 (s), 1020 (s) (yield: 97%, decomposed at 217 °C) [47].

2-(5-(3,5-Dinitrophenyl)-1,3,4-oxadiazole-2-yl)pyridine (4)

A solution of tetrazole (2) (1.00 g, 6.8 mmol) and 3,5-dinitrobenzoylchloride (3)
(2.03 g, 8.8 mmol) in the mixture of pyridine (0.71 mL, 8.8 mmol) and 10 mL of
sodium-dried toluene was heated up to the evolution of nitrogen and then refluxed
for further 3 h. The toluene was rotary evaporated, the residue poured into 75 mL of
cold water, and the mixture was basified to pH 12 with 5% NaOH solution. The
precipitate was filtrated in a vacuum, washed with water, and re-crystallized from
95% ethanol to give brown crystals (97% yield, m.p.: 155-156 °C). IR (KBr, cm™'):
3077 (w), 1532 (s), 1454 (m), 1346 (s), 1276 (w), 1020 (w), 980 (m). '"H NMR
(90 MHz, CDCl;, (ppm): 9.40 (d, J = 5 Hz, 2H), 9.35-9.30 (m, 1H), 9.00-8.80
(m, 1H), 8.55-8.30 (m, 1H), 8.15-7.85 (m, 1H), 7.75-7.50 (m, 1H).
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2-(5-(3,5-Diaminophenyl)-1,3,4-oxadiazole-2-yl)pyridine, POBD, (5)

A mixture of 2-(5-(3,5-dinitrophenyl)-1,3,4-oxadiazole-2-yl)pyridine (4) (0.5 g,
1.59 mmol) and SnCl,-2H,0 (3.60 g, 15.9 mmol) in 20 mL of absolute ethanol in a
100 mL round bottom flask was refluxed for 1.0 h. The mixture was cooled to room
temperature, poured over 50 g of ice, basified to pH 10—12 by the addition of sodium
bicarbonate solution and then extracted three times with 50 mL portions of ethyl
acetate. The organic phases were combined, thoroughly washed with brine, dried over
sodium sulfate and then filtered. Evaporation of the solvent and crystallization of the
precipitates from ethanol/water mixture gave 0.3 g of yellow crystals of the desired
diamine POBD (5) (yield: 65%, m.p.: 176-179 °C). IR (KBr, em™'): 3399 (s), 3326
(s), 3186 (m), 1672 (m), 1605 (m), 1545 (m), 1460 (m), 1081 (s), 918 (m). '*C NMR
(75 MHz, DMSO-dg, ¢, ppm): 101.34, 103.05, 123.25, 124.13, 126.67, 138.29,
143.41, 150.53, 150.70, 163.43, 166.34. '"H NMR (300 MHz, DMSO-d,, , ppm):
8.77 (d, J = 4 Hz, 1H), 8.21 (d, J = 8 Hz, 1H), 8.04 (t, / = 8 Hz, 1H), 7.62 (dd,
Jy =69 Hz, J, = 5.1 Hz, 1H), 6.58 (d, J = 1.8 Hz, 2H), 6.03 (s, 1H), 5.18 (s, 4H).

Method I: general procedure for the polyamide synthesis in ionic liquids
via direct polymerization

In a 25 mL round bottom flask, POBD (5) (0.1 g, 0.395 mmol), dicarboxylic acid
(0.395 mmol), and 1.5 g of 1-butyl-3-methyl imidazolium bromide, [bmim]Br, were
stirred magnetically at room temperature for 10 min. TPP (0.25 mL, 0.88 mmol)
was added to the reaction mixture, and the temperature was gradually elevated to
100 °C under an inert gas blanket. The reaction mixture was held at this temperature
while stirring for 8 h. The polymer solution was poured slowly into 100 mL of
methanol with vigorous stirring and then refluxed for 2 h. The polymer was filtered,
thoroughly washed with methanol and dried in vacuum at 70 °C for 24 h.

Method II: general procedure for the polyamide synthesis
by the polycondensation of dicarboxylic chlorides and diamine,
POBD (5), in the pyridine-NMP system

In a 25 mL round bottom flask, a solution of diamine POBD (§) (0.1 g,
0.395 mmol) in a mixture of 0.3 mL of pyridine and 1 mL of NMP was cooled
to about —10 °C. Dicarboxylic acid chloride (0.395 mmol) was added to the
mixture, which was magnetically stirred at —10 to 0 °C for 8 h. The polymer
solution was poured slowly into 100 mL of methanol with vigorous stirring and then
refluxed for 2 h. The polymer was filtered, thoroughly washed with methanol and
dried in a vacuum at 70 °C for 24 h.

Method III: general procedure for the polyamide synthesis in NMP
via direct polymerization

In a 25 mL round bottom flask, a mixture of diamine POBD (5) (0.1 g,
0.395 mmol), dicarboxylic acid (1.1 mmol), calcium chloride (0.3 g), TPP
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(0.9 mL), pyridine (1.2 mL), and 5 mL of NMP was heated with stirring at 100 °C
for 8 h. The polymer solution was cooled to room temperature, poured slowly into
100 mL of methanol with vigorous stirring and then refluxed for 2 h. The polymer
was filtered, thoroughly washed with methanol and dried in a vacuum at 70 °C for
24 h [48].

Preparation of polymeric thin films

A solution of polymer was made by dissolving about 0.1 g of polyamide sample in
10 mL of NMP. The homogeneous solution was poured into a Petri glass, which
was placed in a 90 °C oven overnight to remove most of the solution, and then the
film was further dried in a vacuum at 150 °C for 10 h [41].

Model compound (5a)

In a 25 mL round bottom flask POBD (5) (0.1 g, 0.395 mmol), propionic acid
(0.005 g, 0.395 mmol) and 1.5 g of [bmim]Br were stirred magnetically at room
temperature for 10 min. TPP (0.25 mL, 0.88 mmol) was added to the reaction
mixture, and the temperature was gradually elevated to 100 °C under argon.
Reaction mixture was held at such temperature with stirring for 8 h. The solution
was poured slowly into 100 mL of water with vigorous stirring. The precipitate was
filtered in a vacuum, washed with water and then dried under reduced pressure at
105 °C for 2-3 h. The crude product was column chromatographed on silica gel
using 40:60 ethyl acetate:hexane as eluant (yield: 85%, m.p. = 249-251 °C). IR
(KBr, cm™"): 3285 (m) (N-H), 3052 (w), 1654 (m), 1532 (m), 1447 (m), 1035 (w),
985(w). '"H NMR (300 MHz, CDCl5_6, ppm): 8.81 (d, J = 3.9 Hz, 1H), 8.35-7.60
(m, 8H), 7.48 (dd, J, = 6 Hz, J, = 5.1 Hz, 1H), 2.49 (q, J = 7.5 Hz, 4H), 1.27 (t,
J =17Hz, 6H). >C NMR (75 MHz, CDCl;, §, ppm): 9.51 (CH5CH,), 30.77
(CH,CHj;), 113.59, 113.99, 123.27, 125.92, 137.24, 139.44, 150.37, 163.23, 167.16,
172.36. Anal. Calcd. for C;oH9N503: %: C 62.44; H 5.24; N 19.17. Found:
%: C 61.64; H 5.24; N 18.83.

Model compound (5b)

In a 25 mL round bottom flask POBD (5) (0.1 g, 0.395 mmol), benzoic acid
(0.048 g, 0.395 mmol) and 1.5 g of [bmim]Br were stirred at room temperature for
10 min. TPP (0.25 mL, 0.88 mmol) was added to the reaction mixture, and the
temperature was gradually elevated to 100 °C under argon. The reaction mixture was
held at this temperature with stirring for 8 h. The solution was poured slowly into
100 mL of water with vigorous stirring. The precipitate was filtered in a vacuum,
washed with water and then dried under reduced pressure at 105 °C for 2-3 h. The
crude product was column chromatographed on silica gel using 40:60 ethyl
acetate:hexane as eluant (yield: 95%, m.p. = 212-215 °C). IR (KBr cm*l): 3275(s),
3046 (w), 1654 (m), 1532 (w), 1441 (w), 1277 (m) 1028 (w), 985 (w). '*C NMR
(75 MHz, CDCl;, J, ppm): 114.75, 115.54, 116.26, 117.20, 123.25, 125.92, 127.17,
128.36, 132.07, 134.21, 137.25, 138.81, 138.85, 166.12, 166.21, 166.52. Anal. Calcd.

@ Springer



Polym. Bull. (2012) 68:113-139 119

for C,7H9N503-2H,0: %: C 65.16; H 4.66; N 14.08. Found: %: C 65.51; H 4.79;
N 14.13.

Adsorption of Co*" from aqueous solution by polymer (11)

The polymer (7) (0.01 g) was placed into 1000 mL of Co** solution at pH 6.0, 7.0,
8.0, 9.0, 10.0, 11.0, and 12.0 in vials agitated mechanically at 200 rpm for 30 min,
followed by stirring at the speed of 40 rpm for 10 min and settling for 10 min. The
pH of the solution was adjusted to the desired value by adding 0.1 M NaOH or
0.1 M HCI. The solid was separated by filtration. The initial concentration of cobalt
was 1 mg/L. Cobalt analysis was done by colorimetry using PAN (1-(2-pyridylazo)-
2-naphthol) as indicator. The reddish Co*"—PAN complex was analyzed at 620 nm
using a spectrophotometer (Hach DR/5000) following a standard procedure
recommended by Hach [49].

Results and discussion
Synthesis of monomer

The new diamine, 2-(5-(3,5-diaminophenyl)-1,3,4-oxadiazole-2-yl)pyridine (POBD)
(5), was prepared in three steps starting from pyiridine-2-carbonitrile (1), which was
converted into pyridine-2-(1H)-tetrazole (2) upon reaction with sodium azide by
refluxing DMF in the presence of ammonium chloride. The subsequent transfor-
mations of pyridine-2-(1H)-tetrazole (2) (Huisgen reaction) with 3,5-dinitrobenzoyl
chloride (3) followed by reduction of (4) with SnCl,-2H,0 in ethanol gave diamine
POBD (5) with an overall yield of 60%, Scheme 1 [41, 42].

Synthesis of ionic liquids

Ionic liquids bearing different alkyl groups (A-F) were synthesized in high yields
from the reaction of N-methyl imidazole and alkyl bromides according to the
method described in the literature, Scheme 2 [45].

Reaction yields, '"H NMR and IR data for these compounds are summarized in
Table 1. Their application as solvents was examined for the direct polymerization
reaction of POBD (5) with aromatic/aliphatic dicarboxylic acids.

0 _No,
cic

) NOz

|\ NaNsg, DMF )’ SnCI22H20 =N
T T——
Pz NH,CI, reflux EtOH reflux
o
HN< (POBD)

0 ) (5)

Scheme 1 Synthesis of POBD (5)
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A: R =n-Pr; B: R=n-Bu; C: R =n'C5H11; D: R =n'C6H13; E:R =n'C7H15; F:R =n'CgH17

Scheme 2 Synthesis of ionic liquids

Table 1 Reaction yields, '"H NMR, and IR data of prepared ionic liquids

pHa
) @
[/> + RBr ———> HsC'N\/eN\F{
N
Br

'H NMR (6 ppm)

IR (cm™') (Neat)

Tonic R Yield
liquid (%)
A n-Propyl 95

B n-Butyl 94

C n-Pentyl 90

D n-Hexyl 81

E n- 87

Heptyl
F n-Octyl 92

'H NMR (300 MHz, CDCl): (ppm):
10.05 (s, 1H), 7.55 (s, 1H), 7.47 (s,
1H), 4.14 (t, 2H, J = 7.2), 3.99
(s,3H), 1.79 (sextet, 2H, J = 7.5),
0.79 (t, 3H, J = 7.5 Hz)

"H NMR (300 MHz, CDCls): (ppm):
10.24 (s,3H), 7.61 (d, 1H,
J =15 Hz), 749 (d, 1H,
J = 1.5 Hz), 4.29 (t, 2H,
J =17.5 Hz), 1.85 (quin., 2H,
J = 7.5 Hz), 1.34 (sex., 2H,
J =17.5Hz),0.90 (t,3H,J = 7.2 Hz)

'H NMR (300 MHz, CDCls): (ppm):
10.08 (s, 3H), 7.58 (s, 1H), 7.43 (s,
1H), 4.13 (t, 2H, J = 7.5 Hz), 3.96
(s,3H), 1.76 (quintet, 2H,

J =17.8 Hz), 1.23-1.12 (m, 4H), 0.72
(t, 3H, J = 7.2 Hz)

"H NMR (300 MHz, CDCl5): (ppm):
10.29 (s, 3H), 7.63 (s,1H), 7.47
(s,1H), 4.27 (t, 2H, J = 7.5 Hz), 1.85
(quintet, 2H, J = 7.8 Hz), 1.25 (m,
6H), 0.83 (t, 3H, J = 6.6 Hz)

'"H NMR (300 MHz, CDCl;): (ppm):
10.13 (s, 1H), 7.59 (¢,1H,
J =18 Hz), 747 (t,1H, J = 1.8 Hz),
421 (t, 2H, J = 7.5 Hz), 1.79
(quintet, 2H, J = 7.5 Hz), 1.31-1.21
(m, 8H), 0.83 (t, 3H, J = 7.20 Hz)

'H NMR (300 MHz, CDCL): (ppm):
9.96 (s, 1H), 7.53 (s, 1H), 7.36 (s,
1H), 4.07 (t, 2H, J = 7.2 Hz),
1.69-1.61 (m, 2H), 1.20-0.95 (m,
10H), 0.60 (t, 3H, J = 7.2 Hz)

IR (cm™Y) (KBr): v em ™' 3411 (m)®,
3119 (m), 3053 (s)°, 2950(s), 1705
(m), 1539 (m), 1465 (m), 1169 (m),
1025 (w)°, 731 (w)

IR (cm™!) (KBr): v em™! 3411 (m),
3119 (m), 3053 (s), 2950 (s), 1705
(m), 1539 (m), 1465 (m), 1169 (m),
1025 (w), 713 (w)

IR (cm™') (KBr): v em™! 3414 (m),
3119 (m), 3045 (s), 2937 (s), 1707
(m), 1636 (m), 1461 (m), 1160 (m),
1086 (w), 731 (w)

IR (cm™!) (KBr): v em™! 3418 (m),
3119 (m), 3046 (s), 2943 (s), 1708
(m), 1563 (m), 1460 (m), 1159 (m),
1025 (w), 748 (w)

IR (cm™') (KBr): v cm ™' 3408 (m),
3053 (s), 2927 (s), 1705 (m), 1539
(m), 1455 (m), 1169 (m), 1015 (w),
723 (w)

IR (cm™') (KBr): v em™! 3411 (s),
3065 (m), 2942 (s), 2846 (s), 1705
(m), 1460 (m), 1169 (m), 1022 (w),
731 (w)

# Peak with medium intensity

® Peak with strong intensity

¢ Peak with weak intensity
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W
o—
NH i NH
2
=N N-N w~ TOH =N N—N
. g
<\:/)_<O ) \ / 0]
[bmim]Br, TPP, 100 °C, 8 hrs.
NH; NH
o=(
W
(5a) : W =Et
POBD (5) (5b) : W=Ph

Scheme 3 Synthesis of model compounds

Model reaction and polyamides synthesis via direct polycondensation in ionic
liquids (Method I)

Model reactions were performed by the amidification reaction of diamine POBD
(5) by propionic acid and benzoic acid. The reactions were done in the same
condition as the polycondensation reaction in [bmim]Br (B) as solvent,
Scheme 3.

The model compounds were characterized using conventional spectroscopy
methods. The C=0 and N-H stretching bands were observed at 1655-1671 and
3275-3285 cm ™', respectively. The —C=N- stretching of the oxadiazole ring
appeared at 1532 cm™'. The "H NMR and '>C NMR spectra were also compatible
with the desired structures. As a typical example, Figs. 1 and 2 show the '"H NMR
and '3C NMR of model compounds (5a) and (Sb), respectively.

The preparation of aromatic/aliphatic polyamides 6-13 with a pendant 1,3,4-
oxadiazole-2-pyridyl group was investigated using the reaction of POBD (5) and the
corresponding dicarboxylic acids in the ionic liquids A-F. The reactions were
performed in the presence of TPP as a condensing agent. The effect of the alkyl
chain length in the ionic liquids on the inherent viscosity and number average
molecular weight (M,,) of the polyamides was studied.

In order to find the optimum time and temperature conditions for the
polycondensation reaction, the reaction mixture of POBD (5) and terephthaloyl
chloride in [bmim]Br (B) was stopped at different time intervals, and the polymer
(6) was analyzed. The highest inherent viscosity (measured in 0.125 w/w
concentrated sulfuric acid) was observed at 100 °C, and therefore this temper-
ature was chosen for all polymerizations. The maximum inherent viscosity was
also obtained during 8 h, and this time was chosen for all polymerization
reactions. The time and temperature profile for this reaction is shown in Fig. 3.
Polymers (6-13) were then synthesized from the reaction of POBD (5) and
appropriate dicarboxylic acids in the ionic liquids A-F in the optimized reaction
conditions.
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| |
___JULLAJQL. | . J}W[IKJ'\«\__,L___._

10 9 3 7 6 5 4 3 2 1 0 ppn

Fig. 1 '"H NMR spectrum (300 MHz, CDCl;) of model compound (5a)

Polymer characterization

The chemical structures of the synthesized polymers were confirmed by elemental
analysis and infrared (IR) spectroscopy. The results are summarized in Table 2. The
N-H and C=0 stretching bands were observed at 3225-3245 and 1657-1667 cm™ Y,
respectively. The calculated and experimental values for CHN analyses are in good
agreement.

Solubility test results (Table 3) show that the synthesized polyamides are soluble
in common polar aprotic solvents such as DMSO, DMF, and NMP, but they are
insoluble in less polar aprotic and polar protic solvents. For this experiment about
0.01 g of a polymer sample was examined in 1 mL of a solvent at room and
elevated temperature (95 °C). The good solubility of these polyamides can be
attributed to the presence of the pendent 1,3,4-oxadiazole-2-pyridyl groups. Because
of these voluminous groups, the packing of the polymer chains in tight structures
through hydrogen bonding between amide groups is prevented, and, consequently,
the solvent molecules can easily diffuse into the polymer chains. The prepared
polymers also showed a good ability to form films. Polymer solutions in NMP were
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Fig. 3 Time and temperature optimization: Reaction yield and inherent viscosity (measured in 0.125
w/w concentrated sulfuric acid) of polymer (6) prepared in ionic liquid, [bmim]Br (F)
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Fig. 4 SEM images of polyamide (6) at a x200 and b x3000 magnifications

evaporated on a Petri glass to form brittle and very smooth surfaces. This can be
seen from the SEM images for the polymers in Fig. 4a—c.

The number average molecular weight, M,, of the polymeric resins were
estimated by vapor pressure osmometry (Table 4). Dilute solutions of polymer
samples were prepared to determine M,. Four polymer solutions of different
concentrations were prepared in DMF for each polymer. The VPO experiment was
carried out for each concentration, and the corresponding bridge output reading in
millivolts was noted. The plot of millivolts versus concentration was drawn. The M,
values of the polymers were calculated with the help of the slope and the VPO
constant K [50].
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Fig. 5 Effect of alkyl chain length of ionic liquids on number average molecular weight

The polyamides were also subjected to inherent viscosity measurements. Due to
the good solubility of all the prepared polymers in concentrated sulfuric acid at low
and elevated temperatures, inherent viscosity measurements were carried out in this
solvent. The results of the inherent viscosity and number average molecular weight
measurements (M,) are summarized in Table 4. The inherent viscosity of the
polyamide solutions depended on the reaction media, and they were in the range of
0.39-1.61 dL/g (measured at concentration of 0.125 g/dL at 25 4+ 0.5 °C). Polymer
(9), obtained from the reaction between POBD (5) and adipic acid, was less soluble
in both DMF and concentrated sulfuric acid. For this reason, measuring its inherent
viscosity and the number average molecular weight (M,) was not possible. No
regular relation between the inherent viscosity and the number average molecular
weight (M,,) or the length of the alkyl chains of the ionic liquid was found. Figure 5
shows the dependence of the number average molecular weight (M,,) as a function
of the alkyl chain length in the ionic liquids. The highest molecular weight was
observed in the 1-butyl-3-methyl imidazolium bromide, [bmim]Br (B), as solvent
for the polyamide 6, 10, while the polyamides 7 and 8 reached a maximum
molecular weight in the 1-pentyl-3-methyl imidazolium bromide (C), [pmim]Br,
under same reaction conditions. The molecular weight of polyamide 12 was not
affected by the reaction media in 1-propyl-3-methyl imidazolium bromide (A),
[prmim]Br, and 1-hexyl-3-methyl imidazolium bromide (D), [hexmim]Br, but
it dropped dramatically in the 1-heptyl-3-methyl imidazolium bromide (E),
[hepmim]Br, and 1-octyl-3-methyl imidazolium bromide (F), [octmim]Br. The
molecular weights of the polymers 7 and 8 were almost independent of the ionic
liquid structure. The maximum inherent viscosity (1.61 g/dL at 25 £ 0.5 °C) and
M, (68290 g mol ") values were observed for polyamide 10 in [bmim]Br (B).

The mechanism of activation of diacids by the ionic liquid and TPP system has
been proposed previously [30]. Initially, an intermediate ionic liquid-TPP complex
(Scheme 4, A) is formed. A subsequent attack of a diacid by such a complex gives
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Scheme 4 The proposed mechanism for activation of dicarboxylic acids by an ionic liquid and TPP

an active acyloxyphosphonium salt (Scheme 4, B). The interaction of this final salt
and the amine group gives an amide.

The thermal analysis results of the polyamides polymers are summarized in
Table 5. Heating to 200 °C and then cooling to room temperature removed the
solvent residues and moisture, giving amorphous samples such that, in most cases,
the glass transition temperatures (1) could be easily observed in the second heating
traces of DSC. The analyzed polymers showed a small weight loss at relatively low
temperatures, which could be attributed to moisture because of the hygroscopic
property of the polyamides. The presence of the voluminous pendant groups, which
increased the disorder in the chains, could also be responsible for the increased
accessibility of water molecules. There are no endotherms related to the melting
transition in the DSC curves up to 200 °C for the polyamides 6, 7, 11, which means
that the polymers were decomposed before the melting transition (as seen in the
TGA curves). Distinct melting endotherms were observed in the DSC curves of the
other polyamides. As a typical example, the DSC and TGA curves of polymer (13)
are shown in Fig. 6. This polymer was obtained from 4,4’-biphenyldicarboxylic acid
and POBD (5) and showed the lowest T, (120 °C), which may be due to the free
rotation of phenylene rings that reduces the chain rigidity. The polymer also had
relatively low thermal stability (Tp = 270 °C, char yield of 19.56% at 600 °C).
Polymer (6) showed the highest temperature at which the maximum rate of
decomposition occurred (Ty,x = 507 °C). The polymer also had a char yield of
49.62% at 600 °C, which was the highest value for the polymers studied. Polymer
(9) showed an exothermic peak within 229-289 °C that could be attributed to the
chain crystallization of long alkylidene segments. The DSC thermogram of the
polymer (6) did not show any melting endotherm. Polymers 6, 10, and 12 had
almost the same structure (Nomex like), but their thermal stabilities were quite
different. It seems that the introduction of the pydinyl moiety in place of the
phenylene segment caused a decrease in the T, value and the appearance of a very
clear melting endotherm in the DSC curve, which improved the polymer
processability, Scheme 5 [51, 52].
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Fig. 6 TGA and DSC thermograms (nitrogen atmosphere, scan rate 10 °C/min) of polyamide (13)
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Scheme 5 Nomex like structure of polymers 6 and 10

Table 5 Thermal analysis (DSC and TGA) of the polyamides

/\J\N\f

N
H

Polymer T, (°C)* T (°C) 10% weight loss (°C) Tp ( °C)° Tmax (CO)°

Char yield*

6 155 N.O. 331 250 507
7 230 N.O. N.A. N.A. N.A.
8 90 292 NAS N.A. N.A.
9 159 373 277 354 391
10 185 305 270 266 320
11 85 N.O. N.A. N.A. N.A.
12 255 478 183 423 487
13 120 285 295 270 324

49.62
N.A.
N.A.
36.17
14.10
N.A.
36.73
19.56

? Derived from DSC curves that obtained after heating up to 200 °C and then cooling to room

temperature

® Onset decomposition temperature

¢ Temperature of maximum rate of decomposition
¢ At 600 °C

¢ Not observed

 Not analyzed
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The results show that the introduction of a hetero atom at a suitable position
(compare polyamides 10 and 12) can increase the thermal stability dramatically.
Polymer 10, in spite of having the maximum molecular weight (M, = 68,290) and
inherent viscosity (#i,n, = 1.61 dL g_l, at 25 °C, in 0.125% H,SO,), had the
minimum thermal stability (7Tp = 285 °C, char yield of 9.90% at 698 °C). Figure 3
shows typical DSC and TGA curves, which were obtained at a scan rate of
10 °C/min for polyamide 13 under a nitrogen atmosphere.

The coordination ability of the 2-pyridyl group adjacent to the 1,3,4-oxadiazole
ring toward metal ions, such as Cu®", Co”", and Cd*", was investigated previously
[53, 54]. Therefore, it may be proposed that polymers containing pendant POBD
units could find applications in waste water treatment for removing toxic heavy
metal ions. The adsorption of Co”" ions from the single metal aqueous solutions
was investigated in batch experiments. The effects of the pH of the medium on the
adsorption capacity were studied. In all experiments, the polymer concentration was
kept constant at 10 ppm. The concentrations of the metal ions in the aqueous phases
after 30 min were measured spectrophotometrically using PAN (1-(2-pyridylazo)-2-
naphthol) as an indicator [49]. The amount of adsorbed Co”" ions was calculated
using the following equation:

01 = [(Co — Ca) x V]/m

In this equation, Q; is the amount of metal ions adsorbed onto a unit amount of
the composites (mg g~ '), Co and C, are the concentrations of metal ions in the
initial solution and in the aqueous phase after adsorption, respectively (mg mL ™),
V is the volume of the aqueous phase (mL), and m is the weight of the polymer (g).

Figure 7 shows the pH dependence of (Q,). The maximum Co”" uptake capacity
was observed at pH 10.0 within 30 min. A decrease in the (Q;) value was observed
at a lower pH, which was due to the protonation of the pyridine ring in the POBD
moieties. The precipitation of cobalt hydroxide at higher pH was responsible
reduction of metal ion uptake capacity. The coordination ability of the prepared
polymers toward other heavy metal ions is under investigation.

Or (mg/g)

Fig. 7 Dependence of Co>" uptake (Q,) on pH for polymer (7)

@ Springer



134 Polym. Bull. (2012) 68:113-139

Polyamides synthesis by classical methods II and III

In order to compare our method for polyamide synthesis with other methods,
polymers 6-13 were synthesized via two other classical methods II and III. The
results for the inherent viscosity and number average molecular weight (M,) were
compared. Polymers 613 were prepared via the low temperature polymerization of
POBD (5) and appropriate dicarboxylic acid chlorides in NMP as solvent according
to method II. The polymerization reactions were conducted at —10 °C in the
presence of pyridine as a proton scavenger. In method III, the polymers were
prepared via the direct polycondensation reaction of POBD (5) with the
corresponding dicarboxylic acids in NMP as the solvent. In this method, according
to the literature, the presence of condensing reagents such as pyridine and TPP and
an extra component such as CaCl, are necessary. The ionic strength of the solution
is enhanced in the presence of CaCl,, which prevents polymer precipitation as the
polymer chain grows [48]. These three methods are shown in Scheme 6.

In order to better compare these three methods, the inherent viscosity and number
average molecular weight (M,) values obtained from method I in [bmim]Br
(B) were compared with those values obtained using methods II and III as given in
Table 6. Carrying out the polymerization reaction in the ionic liquid gave
reasonably good results for the inherent viscosity and number average molecular
weight (M,,).

As is clear from the collected data, the results obtained by method I are close to
the results obtained by method II. It should be kept in mind that method II involves
the use of carboxylic diacid chlorides, which are more expensive than the related
carboxylic acids. The results obtained in ionic liquids are better than the results
obtained with method III. Furthermore, in method I no extra components such as
CaCl, and pyridine were used, which are necessary in method IIl. The polymers

N N
z
NH, e 9 \g o
CN)*H whew ’
\ 7 O ’\‘I/O
NH, N
N
‘/
© z- \©/ (1) z- \(j/

1) for W=OH: lonic liquid, TPP, 100 °C, 8 hrs. @ z-= @ 1y Z= —(CHp)g——

ill) for W=OH: DMAc, CaCl,, TPP, 100 °C, 8 hrs.
illly for W=Cl: 1:1Pyridine.NMP, -10-0 °C, 8 hrs. @ (12) z= S

POBD (5)

® Z=

@ Z= —CHp— 03 z-

Scheme 6 Synthesis of polyamides using POBD (5)
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obtained by method I also showed a better appearance. In general, these results
show that ionic liquids are very suitable reaction media for polyamide syntheses,
which is important from commercial viewpoints.

Conclusions

Ionic liquids based on 1-methyl-3-alkyl imidazolium bromide (A-F) were
synthesized and examined as solvents for polyamide syntheses. Polymers were
synthesized from the reaction between POBD (5) and aromatic/aliphatic carboxylic
diacids and characterized by IR, elemental analysis and the synthesis of model
compounds Sa—b. The polycondensation reactions were performed in the presence
of TPP as a condensing agent and in the absence of any extra components such as
CaCl, and pyridine. The prepared polyamides showed good solubility in common
polar aprotic solvents such as DMSO, DMF, and NMP, but they were insoluble in
less polar aprotic and polar protic solvents. They also showed good film formation
ability and left a very smooth surface upon evaporation of the solvent. The number
average molecular weight (M,) and inherent viscosity of the polyamides were
measured. We could not find any relation between the number average molecular
weight (M,) or inherent viscosity and the type of ionic liquid. However, the
maximum values were obtained for polyamide 10 in [bmim]Br. In order to show
the effective role of ionic liquids as solvents and obtain a better comparison, the
polyamides were synthesized through the classical methods II-III, and the results
were compared. In method II, the polymers were obtained via a polycondensation of
POBD (5) and the corresponding dicarboxylic acid chlorides in NMP as a solvent.
The reaction was carried out in the presence of condensing reagents such as pyridine
at low temperature. Method III involved a polycondensation reaction of POBD (5)
and the corresponding dicarboxylic chlorides in NMP as a solvent in the presence of
CaCl, and pyridine. The inherent viscosity and molecular weight measurements
showed that method I was very similar to method II, and, in some cases, method I is
preferred. The physical appearance of the polyamides obtained by method I is also
better than that obtained with methods II and III. By considering the reaction
simplicity and reactant price, using ionic liquids as reaction media is very cost
effective. Removal of Co®" from aqueous solutions using polyamide (7) was also
noted. The polymer showed the highest adsorption capacity (Q,) for removing of
Co®™ from aqueous solution at pH 10.0.
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